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Conical flow near singular rays 
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The steady flow of an ideal gas past a conical body is investigated by the method 
of matched asymptotic expansions, with particular emphasis on the flow near 
the singular ray occurring in linearized theory. The first-order problem governing 
the flow in this region is formulated, leading to the equation of Kuo, and an 
approximate solution is obtained in the case of compressive flow behind the main 
front. This solution is compared with the results of previous investigations with 
a view to assessing the applicability of the Lighthill-Whitham theories. 

1. Introduction and mathematical formulation 

I. 1.  Introduction 

The problem to be studied here is the supersonic flow of an ideal gas about a 
stationary body of arbitrary conical shape. The investigation, motivated by 
recent interest in sonic-boom propagation, considers what is perhaps the simplest 
example of a situation in which essentially multi-dimensional effects near the 
wave fronts of linearized theory preclude the application of the standard co- 
ordinate straining and shock fitting techniques, a fact pointed out by Hayes 
et ul. (1971). The geometry of the problem is shown in figure 1. 

Even with the restriction to conical bodies, exact solutions to the nonlinear 
equations of motion are known for only a few simple body shapes; for more 
general shapes one must resort to approximate analytical or numerical methods 
(Courant & Friedrichs 1967). Analytically, progress can be made by assuming 
that the body produces only small disturbances in an otherwise uniform stream, 
which leads directly to the linearized theory of supersonic flow developed in 
Ward (1955), where a number of specific problems are solved. 

However, the results predicted by linear theory are not uniformly valid, as 
Lighthill (1949b) and Whitham (1952,1956) point out. In  particular, they predict 
a continuous field where surfaces of discontinuity (shocks) are known to exist. 
The limitations of the theory appear more clearly when one regards a linear 
solution as the first term of an asymptotic expansion of a solution to the full 
nonlinear field equations governing the flow. In  fact, this expansion, which will 
subsequently be referred to as the ‘outer expansion’, does not converge uni- 
formly in any region containing the linearized wave fronts (Lighthill 1949b). 
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FIGURE 1. G-eometry of typical conical body, and co-ordinate system. 

To overcome these difficulties, Lighthill (1949a, b )  and Whitham (1952, 
1956) devised special asymptotic methods, and applied them to a number of 
problems. In  particular, Lighthill (19493) discussed flow past conical bodies 
extensively. The great advantage of the special techniques is that they yield the 
first term of a uniform or composite asymptotic expansion, valid near the linear- 
ized wave fronts as well as away from them, while requiring only a solution of the 
equations of the linearized theory. They include the prediction of shocks in 
regions where they are expected. 

However, though the Lighthill-Whitham results seem to give a correct first- 
order description of the flow over the major portion of the wave fronts, they are 
obviously incorrect along singular rays (i.e. lines along which the linearized 
plane characteristics of discontinuity are tangential to the characteristic cone 
emanating from the apex). The shock strength, as predicted by the Lighthill- 
Whitham theories, approaches infinity near such a line. One reason for this non- 
uniformity is that both Lighthill and Whitham used approximate representa- 
tions of the solutions to the linearized problem that are not valid near the singular 
rays, a problem which may be overcome by using asymptotic representations of 
the solutions to the linearized problem that are uniform in a parameter measuring 
position along the wave front. Such representations may be obtained either by 
expanding known solutions, or by the methods outlined in Myers (1971). How- 
ever, even with such representations available, it  is not clear how the methods of 
Lighthill and Whitham could be extended to yield first-order solutions to the 
nonlinear problem valid near the singular ray. Some attempts have been made. 
Legras (1953) tried to generalize Lighthill’s approach, while Davis (1969) 
attempted to extend the Whitham technique. Their conclusions will be examined 
in the light of results obtained in this paper. 

The mathematical technique of matched asymptotic expansions, which is 
explained by Van Dyke (1964), will be applied to study the flow near the singular 
rays. This method permits a systematic, precise formulation of the equations 
and auxiliary conditions governing the flow near the singular ray, which may be 
used to deduce the solution or to check solutions obtained by other methods. 
It leads, however, in contrast to the Lighthill-Whitham methods, to a nonlinear 
first-order problem. In  fact, the equations and shock conditions derived are 
equivalent to those found less formally by Kuo (1955). 
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1.2. Mathematical formulation 

Consider steady flow of an ideal, non-conducting gas past a body. It is assumed 
that the gas is polytropic, with constant specific heats. The motion is governed 
by the equations of inviscid gas dynamics derived, for example, in Courant & 
Friedrichs (1967):  v. (PT) = 0, 1 

i T.V($T.T+yF/(y-i)P) = 0, 

T . VP + (vp)/p = 0, 
where ii, 1>, and p are velocity, pressure and density, respectively. 

Let (F, 8, x )  be a cylindrical co-ordinate system and assume the flow ahead of 
the body is a uniform supersonic stream with T = qe, ,  @ = po,  p = po,  where e, 
is a unit vector in the z direction (figure 1) .  If the free-stream sound speed is 
denobed by co = (ypo/po)* < V,, then we define M = V,/co, P = ( M 2 -  l)*, and 
r = pT-1~. The surface of conical bodies with apex at the origin is described by 

4j = G*($) for 2 = rcos8, ij = ?sine. (1.2) 
We define dimensionless perturbation variables as follows : 

where E,, Ve an i?, are the cylindrical velocity components, and define the (column) 
vector q of perturbation variables by 

qT = [% V l  w, P, PI. 
Since only conical bodies are to be considered, we introduce the assumption 

of conical flow, under which we seek solutions of the equations of motion which 
depend on r and 6 but not on x .  In  such solutions, all flow variables are constant 
on straight lines through the origin. The equations of motion (1. l), for conical 
flow, yield the following quasi-linear vector equation for q (Zahalak 1972): 

(1.3) aq, + bq, + d = 0, 

where the subscripts denote partial differentiation, and the matrices appearing 
in ( I .3) are defined by 

where 1 = M2(y-  1) (1 + P ) ~  and J = ru-r2p-l (1 +w). 
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The boundary condition expressing the requirement that the velocity at the 
surface of the body be tangential to the surface may be formulated (Zahalak 
1972) as 

($2 + Q2)-*{/3(dG*/d$) ( 2 ~  + Qw) - ~ ( Q u  + $v)} + (1 + W )  [G* - 2 (dG*/d$)] = 0 (1.4) 

on Q = a+($). The flow is assumed to be undisturbed ahead of the wave surface 
generated by the body, yielding the initial condition q = 0 for r sufficiently large. 

Finally, as the flow is supersonic, we seek 'weak solutions' (in the sense of 
Courant & Hilbert 1966) of (1.3), which may be discontinuous or have dis- 
continuous derivatives across certain conical surfaces. Derivatives of q may be 
discontinuous across a characteristic surface r = 1 - h(8), while q is itself con- 
tinuous across such a surface, if h(8) satisfies the characteristic equation (Zaha- 
lak 1972) 

M (sr { -pu( 1 - h) -pvh' + (1  +w) (1 - h)2} = { p 2 (  1 - h)2 +p2h'2+ ( 1  - h)4}9. 

Further, q may be discontinuous across shocks, T = 1 -7(8). On such surfaces 
the set of shock conditions to be satisfied may be taken as (Keller 1954) 

(1.5) 

(1.6) 

on r = 1 - r / ( O ) ,  where v, = r+u+n,v+n,(l +w), and where n, the normal to 
the shock, is given by 

1 [(1+p)v,l= 0, [ P + f 2 ( l + p ) ~ t l  = 0,  

[ ( y  - 1) M2v2, + 2( 1 +YIP)/( 1 +p)l = 0, 

[n,u-n,w] = 0,  [ T Z ~ U - ~ ~ W ]  = 0, 

- P( 1 - 7) e, - Prl'e, + ( 1 - r )2  e, 
{py 1 - 7)2 + p2p + (1 - r)4}3 

n = n,e,+n,e,+n,e, = 

Inaddition to the above shock conditions, it can be shown (Courant & Friedrichs 
1967) that the pressure must increase across a shock in the direction of the 
mass flux. 

In  fiQ 2 and 3 we briefly indicate how the flow in regions away from the singular 
ray, which has been extensively treated by other methods, may be analysed 
through the formalism of matched asymptotic expansions. In  9 4 we apply this 
formalism to obtain a description of the flow near the singular ray. 

2. The outer expansion 
Solution of the problem stated in 9 1 by the method of matched asymptotic 

expansions begins by introducing, through the boundary conditions, a per- 
turbation parameter E ,  which measures the magnitude of the disturbance gener- 
ated by the body. Then q = q(r,  B,B), where, by definition, q(r,  8; 0) = 0. 

The first step of the solution is to assume an ' outer expansion ' of the form 

q(r,  8; E )  = a,(€) q(Q(r, 8)  +a2(€) p("' ( r ,  8)  + . . . , 

q"'T = [u(i), &), w(i),p(i), p'i']. 

(2.1) 
where the ad(€) are diagonal matrices with diagonal elements & ( E )  ( j  = 1 , 2 , .  . . , 5 )  
and 
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FIGURE 2. Typical characteristic geometry for first-order outer problem. 

The sequences of gauge functions {alj(e), 82j(e), . . .} are assumed to be 
asymptotic sequences as defined in Erdelyi (1966) and Van Dyke (1964). 

Gauge functions for the outer expansion are discussed in Ward (1955), where 
a distinction is drawn between ‘thin bodies’ and ‘slender bodies’. Slender 
bodies do not generate the diffraction-like effects that are of special interest in 
this study, and can be treated satisfactorily by the methods of Lighthill 
( 1 9 4 9 ~ ~  b )  or Whitham (1952, 1956); they will not be considered further here, 
For thin conical bodies whose surface is given by G(x;e) = 0, the mean body 
surface consists of planes, for simplicity assumed to be a portion of the plane 
0 = 0, n-. Therefore the body surface (see figure 2) is defined by 

4 j  = eG(2) for rl < 2 < ro. (2.2) 

To construct the first-order outer problem, only the first-order gauge func- 
tions are needed, and Ward (1955) indicates that for thin bodies these are all 
equal to e itself. Therefore, for thin bodies, 

4 j  = {e,J&)J&), ...I (j= 172,3,4,5).  (2.3) 

If (2.1) and (2.3) are inserted into the equations and auxiliary conditions stated in 
5 1, and the outer limit taken, then, as shown in Zahalak (1972), there results a 
first-order problem which is completely equivalent to the linearized theory of 
supersonic conical flow. The solution of this problem may be reduced to the deter- 
mination of a ‘ conical potential’f(r, @, satisfying 

1 1  
( 1  - w w  + ;fr + ,,fss = 0, 

where p(l) is determined from f by 
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The properties of the solutions to this first-order outer (linearized) problem 
are discussed at length in Lighthill (1949b), Ward (1955) and Zahalak (1972), 
and will be only briefly outlined here. Equation (2.4) is hyperbolic outside the 
unit circle r = 1 (corresponding to the Mach cone of the apex), and elliptic inside. 
In the hyperbolic region, the characteristics consist of straight lines tangential to 
the unit circle. Typical characteristic geometry for the first-order outer problem 
is shown in figure 2 .  @vanishes in the region of undisturbed flow outside the wave 
front, which in the first-order outer representation consists of segments of the 
unit circle and straight lines through the leading edges tangential to the unit 
circle (e.g. ABCA in figure 2). 

Bothf and its derivatives are continuous across the unit circle, which we call 
the ‘diffracted front ’ by analogy with unsteady two-dimensional diffraction 
problems. However, the derivatives of f (and therefore the perturbation flow 
variables) may be discontinuous across characteristics through the leading edges 
of the body, which we call ‘main fronts’. The main fronts are tangential to the 
unit circle at  the singular points, e.g. point B in figure 2. 

The outer expansion of the boundary condition ( 1.4) yields 

w(l)lo=o = wo(2) = /j-l{G(2)-2Gf(2)} for y1 < 2 < ro, (2.5) 

which shows that, according to linearized theory, there will be a discontinuity 
in q(1) across the main front provided that 

G(r,,) - roG’(ro) + 0. (2.6) 

In  fact, we have found it convenient to impose certain restrictions on the function 
G that describes the body shape and orientation, to limit somewhat the variety 
of possible flow patterns near the singular point. The first of these restrictions is 
(2.6). The second is 

Gff(ro) < 0, (2.7) 

which excludes, for example, bodies with supersonic cusped leading edges. 
Further, we assume that G(r) is analytic at  r = ro. These restrictions are satis- 
fied by many bodies possessing shapes and orientations of practical interest. 

Lighthill (1949b) and Zahalak (1972) showed that, if a characteristic con- 
nects a point on the unit circle to a point r = r* on 6’ = 0, and if the boundary 
function ( 2 . 5 ) ,  uo(r), is analytic at r = T * ,  thenf(r, 0) may be represented in the 
neighbourhood of this point by the two series 

$B(8)(~--1)#+ ... ( r  > I )  

- $  A(O)(l-r)%+ ... ( r  < 1) .  (2.8) 
fp, 8) = q e )  - c(e) ( I  - r )  + 

The notation here agrees with that of Lighthill (19493). 
However, if r = I, 0 = 8, is the point a t  which the characteristic through the 

leading edge is tangential to the unit circle; the representation (2.8) is no 
longer valid for r < 1, since the boundary conditions for the elliptic problem 
a,re discontinuous a t  the point. The behaviour of the first-order outer solut,ion 
near such a point may be obtained by analytic function theory, or through the 
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uniform wave-front expansions discussed in Xyers (1971). The former method 
was employed Zahalak (1972) to deduce that, for r < 1, 

1 1  e,-o 
W@)(S, 0) = { w ~ ) ( o ,  OJ +g,(s, O)} - + - tan-1 - L = ( -8 >) 

+ g,(S, e) log ($2 + (0, - 0 ) 2 p  + g3(s, o), (2.9) 

where s = - sech-l(r). The gi(s, 0) in (2.9) are analytic a t  s = 0,0 = 0, and vanish 
there. The velocity component w(l) satisfies Laplace’s equation in the variables 
s and 0, and (2.9) reflects the logarithmically singular behaviour of such a solution 
near a point at  which the boundary data are discontinuous. The remaining first- 
order components of q may be obtained from 

$)Cl) = = - MZdl). I 
The behaviour of the coefficients A(@),  I?(@, C(0)  and D(0) in (2.8) near the 

singular point was also examined in Zahalak (1972), where it was found that, as 

0 -+ 00, 
242 c, 

A(0)  = -- n ( O , - H ) + O ( & )  I 
~ ( 0 )  = c(o) = n(e) = 0 

B(e) = 24 vh(ro)/(,8 cos2 8,) + O( 1) 

D(8) = - +co (0, - 8)2+ o((8, - O)2) 

for e > e,, 
(2.11) 

c(e) = c , + O ( i )  1 for 0 < O o , j  

C, = vo(r,)/~sinOo. 

From (2.11) and (2.8) it is clear that w(1) (0,O;) in (2.9) is equal to -Co. 
One could attempt to construct further terms in the outer expansion (2.1). 

But, as Lighthill (19493) pointed out, the fact that frr = O( 11 - T I - * )  on r = 1 
will cause successive terms in this expansion to be progressively more singular on 
1‘ = 1, indicating that the outer expansion is not uniformly valid in regions con- 
ta.ining the unit circle. In  addition, of course, the outer expansion is not uniformly 
valid near the plane characteristic AB in figure 2. In  QQ3 and 4 the leading terms 
of inner expansions, that correct these deficiencies of the outer expansion, will 
be considered. 

3. Inner expansions away from the singular point 
Construction of inner expansions to represent the solution near the wave 

fronts, where the outer solution is not valid, is considered in detail by Zahalak 
1972). These calculations a,re lengthy, but represent a straightforward applica- 
tion of the methods presented by Whitham (1956) and Van Dyke (1964). Except 
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’ P r o -  
FIGURE 3. Regiom of validity of various expansions (schematic). - - - -, I (inner 

expansion); an, I ~ ;  B, I&; R, O (outer expansion); N, I=;  m, M ~ .  

for one illustrative case, details are omitted for the sake of brevity, and only the 
final results are presented. It is found that four separate ‘inner’ expansions are 
required to describe the flow in regions contiguous to the singular point. These 
expansions are denoted by the symbols IL, IL,f, MR and IR, and their regions of 
validity are schematically indicated in figure 3. In  each case below, the results 
may be verified by substituting the indicated expansions and inner variables 
into the equations of motion ( 1.3)) and finding the limiting form of the equations 
as e + 0 with the inner variables fixed. It is found that, to first order in each of 
the expansions, the relationsp = p = - M2w hold. Then each of the results below 
is an exact solution to the corresponding system of inner equations, and each 
satisfies the matching conditions of Van Dyke (1964). 

Near the diffracted front to the left of the singular point, the IL expansion 
holds. The inner variables in this region are defined as 

d = ~ - ~ ( l - r )  and P = O,-B. 

A sketch of the analysis for this case follows; the other cases are treated in an 
essentially similar manner. Gauge analysis indicates that the IL expansion has 
the form 

h ’> (3.1) 
u = e2~(1)@, P) + o(e2), 2, = e4P(1)(6, P) + O(E4), w = e+(1)(8, P) + o(e2) 

A 

p = €2P(1)(6) P) +o(e2),  p = s2R(q8 ,  P)+0(€2). 

If (3.1) is substituted directly into the equations of motion (1.3)) the inner limit 
yields the following system of first-order inner equations: 

( 3 . 2 ~ )  

(3.2 b, c) 
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Inspection of the systey (3.2) shows that it is insufficient to determine the 
five quantities ??(I), P(l), W(l), p(l) and &(I), because the equations are not a,ll 
independent : the linear combination 

(3.2e)+(P2/M2-y) (3.2d)+(B2/M2) (3.2b) +(3.2a) (3.3) 

vanishes identically. This difficulty may be overcome in various ways. For ex- 
ample, the equations of motion could be expanded to second order, and a fifth 
independent relation between the first-order coefficients could be obtained from 
the second-order terms in this expansion. However, this approach requires a 
knowledge of the .IL expansion to two terms. As an alternative, we have chosen 
to replace the last equation of (1.3) by the linear combination (3.3) of the basic 
field equations ( 1.3). The inner limit of this new equation yields, after simplifica- 
tion, 

h 

( 2 8  + (M2//32) (2(/3??(U- &1)) +#(1)-2(1)))  O(2 X - U(1) = 0, (3.4) 

a fifth independent equation for the determination of the five first-order co- 
efficients. Similar problems arise in expanding the shock conditions, and these 
may be handled in a similar way. This simple system of first-order inner equa- 
tions may be readily integrated to yield (after imposition of the shock and 
matching conditions) 

A h A 

~ ( 1 )  = ~ ( 1 )  = ~ ( 1 )  = 0 for 2 < 2, ( p), j (3.5) 

O(1) = /3A([(/3KA)2+8]t+pKA} 
$(l) = - A{[(/3KA)2 + *]* +/3KA} 

V1) = Q/3 - { [ (/3KA)2 + 8]* + / 3 K ~ l } ~  

for 2 > g,( q, 
dA 

dEi 

where K = +(y + 1)  M4/3-3. (The functions A ,  B,  C, D are the expansion coeffi- 
cients defined in $ 2 . )  If A( P) < 0, b,( r’) = 0 represents a characteristic of dis- 
continuity, while, if A( P) > 0, there is a shock given by 

&( P) = -$(/3KA)2+ ... . (3.6) 

Near the main front to the right of the singular point, inner variables are 
chosen as 3 = e-l{l- r cos (8, - 8))  and P = B0 - 8. Then in the I,M expansion we 
have u = v = w = 0 for x < 0, while for 2 > &(P), 

(u, e, w) = e(v,(r,)/sin 6,) (cos P, sin P, - P-1) + . . . . (3.7) 
I f ~ O ( T 0 )  < 0, 

Xd(B) = - {Kvo(ro) sin (8, - P )}{cos B sin2 8,,]-1+ . . . 

represents a characteristic of discontinuity, while, if vo(ro) > 0, there is a shock 
given by &(P) = - {Kwo(ro) sin (8, - P)} ( 2  cos d sin2 8,}-1 + . . . . In  the latter 
case, there is an expansion wave in the region 0 < k < .&( Y )  given by 

(u, w, w)  = d{sin 8, cos d }  { K  sin (0, - P)}-l (cos P, sin F, -P-l). (3.8) 

To correct the non-uniform validity of the outer expansion near the diffracted 
front to the right of the singular point, the ‘middle’ variables x = e-1( 1 - r )  and 

35 F L M  63 
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= 8, - 8 are first introduced. Solution of the first-order problem yields the 
leading term in the NE expansion 

u = €/3C+ ... v = -€/?(dD/dF)-t...W = E(D-C)+ .... (3.9) 

However, if the next term in this expansion is computed, one finds, for example, 
t h a t  _--.._ 

B [ E - X ] 9  (X < E )  + ..., { A [ X - E ] 5  (X > E )  
u = € / 3 p c + E % f l  (3.10) 

where E(8)  = - / ? ~ C ( B ) + M 2 2 - 1 ~ - ' ( 2 + ( ~ -  1)M2)D(8) .  (3.11) 

Thus, the ill, expansion shifts the square-root singularity of the linearized solu- 
tion from r = 1 to r = 1 -eE(B), which is the first-order location of the charac- 
teristic of discontinuity or shock found by Lighthill (1949b). For reasons ana- 
logous to those discussed by Lighthill (1949b), it is expected that the singularity 
in the second term of the M, expansion will render this expansion invalid suffi- 
ciently close to x = E( F), and a supplementary inner expansion I, is required 
to describe the flow in this region. 

For the I, expansion, the inner variables are defined as X = e-'(( 1 - r )  - eE(8)) 
and P = 6, - 6. Solution of the first-order I, problem yields 

(3.12) 
dD 
dY 

This is identical to the first term of the MR expansion; the differences between 
Jl,, and In first appear in the second terms of these expansions, While the form 
of these second-order terms can be found by solving the appropriate second- 
order equations, it appears that not all of the arbitrary functions of integration 
entering these solutions can be determined by matching unless the second term 
of the outer expansion is available. Therefore, for the purposes of this study, only 
the leading terms in each expansion are listed. However, the first approximation 
to the shock strength may be found from the second term of the I,  expansion 
(which is O(c2) in p )  regardless of the arbitrary functions of integration. This is 
a situation analogous to that found by Lighthill (1949 b ) ,  and in fact the shock 
strength so computed agrees exactly with that given by Lighthill. The form of an 
approximate solution constructed by the method of Whitham (1956) for the 
region near the diffracted front to the right of the singular point clearly indicates 
that two separate expansions are required to describe the solution. 

The behaviour of A(@, B(@,  etc. (listed at the end of $2) as 8 -3 8,, and the 
results of this section, lead to the following conclusions. 

(i) Sufficiently close to the singular point two types of behaviour are possible. 
If vo(ro) > 0, there are shocks near the main front and the diffracted front to the 
left of the singular point, while there is an expansion across a characteristic of 
discontinuity near the diffracted front to the right of the singular point. If 
vo(ro)  < 0, the situation is reversed: there are expansions across characteristics 
of discontinuity near the main front, and diffracted front to the left of the singular 
point, while there is a shock near the diffracted front to the right of the singular 
point. 

u = €/?C+ ..., v = - € b y +  ..., w = E ( D - C ) +  ... . 
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(ii) These inner expansions, together with the outer expansion, cannot cor- 
rectly represent the flow near the singular point, since the strength of the shock 
near the diffracted front approaches infinity as 8 -+ 8,. 

In 8 4 we consider the leading term of an inner expansion describing the flow 
in the vicinity of the singular point. 

4. The inner expansion near the singular point 

4.1. Formulation of the Jirst-order inner problem 

It is clear that the inner expansions listed in $ 3  to represent the solution near the 
diffracted front cannot be valid near the singular point, because they indicate 
that both the shock position y(0) and the shock strength approach infinity as 
8 + 8,. A separate inner expansion is needed to represent the solution near the 
singular point. An examination of the contiguous expansions indicates that an 
appropriate definition for the inner variables is 

X = (1 - r)/e and Y = ( ~ 9 ~ -  O)/e*, (4.1) 

(4.2) 

and, with the inner variables so defined, the inner expansion takes the form 

q(r,  e;  e )  = qx, Y ;  €1 = A,(€) Q ~ X ,  Y )  + A ~ ( € )  Q ~ X ,  Y )  + . . . , 
where 

the Ai are diagonal matrices of gauge functions as described in $ 2, and 

Q(OT = [p), ~ ( i o ,  wco, pcs, ~ ( 0 1 ,  

All = A13 = A14 = A15 = E ,  

while A,, = €8. When this expansion is inserted into the field equations (1.3) 
and the inner limit taken, there results the system of five equations for the 
determination of q(l)f 

(4.3) 

} (4.4) 

1 
1 - j y ( 2 + - ( W 2 + R ( l )  x) = 0, 

P x - '  P 

P 
M 2  - U'1' - P'1) - 0 N 2 v $ - P y = 0 ,  - M ~ W ~ + P ~ ) = ( J ,  

(2(P7JCU - WCS) + yp(1) - RCU)\ 7J$ - U(1) + vy = 0. M2 
2x + { a  J 

If shocks or characteristics of discontinuity are assumed to occur in the inner 
region, the appropriate first-order characteristic equations and shock conditions 
may be obtained by expanding (1.4) and (1.5) under the assumption 

(1  - r )  = h(8; e) = h*( Y ;  6) = 

( 1  - r )  = ~ ( 8 ;  e )  = v*( Y ;  e )  = E@)*(  Y )  + o ( e )  on a shock. 

Y )  + o(e) on a characteristic, 

For the characteristic this yields 

t See remarks preceding (3.4).  
35-2 
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If the U(l), W(I), etc., are bounded, then real characteristics will exist as X -+ - co 
and will not exist as X -+ + co, which corresponds to the fact that the equations 
governing the first-order outer flow are hyperbolic outside the unit circle, and 
elliptic inside. 

Instead of inserting (4.4) into (1.6) and expanding, a completely equivalent 
system of first-order shock conditions may be obtained more directly by regard- 
ing (4.3) as a system of conservation laws, and by constructing the discontinuity 
conditions which weak solution of this system must satisfy. Writing (4.3) in 
divergence form, 

+ 

Y 

+ 

P 

0 

0 

0 

0 

-3u 

= 0, 

and denoting a shock surface by w ( X ,  Y )  = 0, the shock conditions follow 
immediately as (Courant & Hilbert 1966, p. 489) 

If wx = 0, then the surface of discontinuity is given by Y = constant and 
the first three conditions are automatically satisfied, while the last two require 

[P‘”] = [ p)] = 0, 

i.e. the pressure and normal velocity must be continuous across the surface. This 
represents a contact discontinuity. The discontinuities in U(l),  W(l) and R(l) 
appear to be arbitrary, but it will be shown shortly that these functions are all 
proportional to P(I), and therefore must also be continuous. It does not appear 
possible to have contact discontinuities in the inner solution. If way + 0, then 

w p/ox = - d X / d  Y 

on the shock, and (4.6) may be rewritten in an obvious manner in terms of d X / d  Y .  
I n  addition to (4.3), and shock conditions (4.6), the inner solution must satisfy 

matching conditions with the outer solution of $ 2  and all the contiguous inner 
solutions of 5 3. It is assumed that the shocks and characteristics of discontinuity 
separating the disturbed from the undisturbed flow occur in the inner region, and 
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therefore @)vanishes identically for X < X,( Y ) ,  where X,( Y )  is the locus of these 
discontinuities, 

The first, second and fourth equations of (4.3) may be rearranged to yield 

In  any region free of shocks, the general solution of these equations is 

The first three shock conditions (4.6) (assuming wLy $: 0) require that gl, g, and g, 
be continuous across any shock. Therefore, g,, g2 and g ,  are continuous every- 
where. But, since &(I) = 0 for X sufficiently negative, we must have 

from which 
Sl( Y )  = 9,( Y )  = 93(  Y )  = 0, 

everywhere. Using (4.7), the third and fifth equations of (4.3) become 

2(X + KU(1)) UgJ - U(1) + Vg)  = 0 and V g  - U s )  = 0, (4.8) 

while the last two shock conditions (4.6), after some rearrangement, may be 
written as 

[ V(l)] + [ U 9  ax - = 0 and (g)2+2x = -K([U(1)]+2Uf)) (4.9) dY 

on the shock, where Uil) is evaluated on the front side of the shock. 
The system (4.8) furnishes two equations for U(1) and P), which, together 

with shock and matching conditions, are assumed uniquely to determine these 
functions. W(l), Pel), R(l) are then completely determined by (4.7). If we define 

where C, = C(0,) (see $ 2  for the definition of C(O)),  then (4.8) and (4.9) become 
respectively 

2 ( ~ + 6 ) 6 ~ - - 5 + 7 ~  = 0 a,nd T ~ - & ,  = 0, (4.11) 
and, on the shock, 

ax ax 2 
- - 

dY “1 
_ -  and (G) + 22 = - ([t] + 26,). (4.12) 

The second equation of (4.11) implies that the problem may be posed in terms 
of a potential: 

2(x + az) Qzz - az + QUU = 0, ( 4 . 1 1 ~ )  

where 5 = aZ and y = Qv. Equation (4.11 a)  was obtained by Kuo (1955) by more 
informal methods, starting with the assumption of irrotational flow, and the 
first equation of (4.12) is equivalent to his condition of continuity of at across the 
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shock. It will be found convenient for certain purposes to examine the solutions 
of (4.11) in the hodograph ( 5 , ~ )  plane. Introducing the hodograph transforma- 
tion, (4.11 ) becomes 

(4.13) 

where j = x5 y?, - xrys. This transformation is valid a t  all points where neither j 
norj-l vanishes. 

Before proceeding with the construction of particular solutions of (4. ll), we 
obtain the inner expansions of some of the contiguous solutions given in $92 and 
3. These expansions provide constraints on the inner expansion, and furnish a 
guide in constructing particular solutions of the inner equations. In  $ 3  we intro- 
duced a notation to identify the various inner expansions valid near the wave 
fronts, but away from the singular paint. We now further introduce the symbol 
0 to denote the outer expansion, and the symbol I to denote the inner expansion 
valid near the singular point. To symbolize the expansion obtained at  various 
steps in the matching process, we introduce the shorthand (m - I i ) / (n  - I,) 
to mean: the m-term 4 expansion of the n-term Ik expansion. With these 
definitions, and the results of $ 3 ,  we have the following. 

The (1 - I ) / (  1 - I,) expansion. 

i 0 

for X > X,, while u and v both vanish for X < X,. In terms of the  x and y of 
(4. f 0), these results may be written 

for E < x&), where 

I 0  

In (4.14) the upper signs are chosen if wo(ro) > 0 and the lower signs are chosen 
if vo(ro) < 0. This convention will be used for the remainder of 94. 

--s = sech-lfr) = ( Z ( I - - ~ ) ) ~ + O ( I - F ) %  = ( ~ Z X ) & + O ( & ) .  

The ( 1  -I)/( 1 - 0) expansion. 
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Using (2.10) and (2.11) it is easy to show that (Zahalak 1972) 
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(4.15) 

U - ,eF(&*)+..., 

am - 
V 

(PI Qo I 18 K+ 
1 

where F( t )  = &+- tan-l(t). (4.16) 

Equation (4.15) can also be obtained as the first term of the inner expansion of 
the uniform wave-front expansions discussed in Myers (1971). 

n 

In matching (4.15) with the inner expansion, we must take the limit of 

as e + 0, with r and 6 held fixed, which is the same as obtaining the limiting 
behaviour of g(x,y) and T(x, y) as x + with y/(2x)t held fixed. Equation (4.15) 
shows that, in this limit, we must have 

The above conditions may be inverted to obtain the form of this matching con- 
dition in the hodograph plane, which will be usedin $ 5 .  Equation (4.17) shows that 
< approaches a constant (positive for vo(ro) > 0 and negative for vo(ro) < 0, since 
F > 0), while 7 + 5 co. Inverting (4.17), 

+ .... (4.18) T2 - 7 cot (4 
= 2{(1/7r)--9cot(7r<))2 + *..) = {( 1/n) -<cot (n<)> 

Therefore, in the hodograph plane, the matching condition between the one- 
term inner and outer expansions requires that x(c, 7)  and y(& 7) have the asymp- 
totic behaviour (4.18) as y + k 00 on < = constant. The expressions (4.18) are 
valid for both vo(ro) < 0 and vo(ro) > 0, and the difference lies in the fact that for 
vo(ro) > 0 the hodograph image of the motion lies in the first quadrant u > 0, 
v > 0, while for vo(ro) < 0 the image lies in the third quadrant u < 0, v < 0. If we 
define 

(4.19) 

the matching condition may be written as 

X = $$’(<) y2+ ..., y = #(<) 7 + . .., (4.20) 

as 7 -+ k m on = constant. 
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4.2. Particular solutions 

Both (4.1 1) and (4.13) are nonlinear, and there is no analytical procedure known 
for constructing solutions satisfying prescribed auxiliary conditions. However, 
it  is feasible to seek particular solutions by trial and error. First, 5 = 71 = 0 
is a solution, and this solution is appropriate ahead of the curve (shock and/or 
characteristic) which forms the boundary of the disturbed region. Next, the first 
term of the ( 1 - 1)/(1- IJI) expansion, which can easily be obtained for vo(r0) > 0 
as 

c =  1, 7 = y  for x + & y 2 >  -1- 2 ,  

and for wo(ro) < 0 as 

-(x+JyZ), 0 < (x+*y2) < l}, = { --y(x+*y2), 0 < (x++y2) < 11 
$ = {  - 1, (x+*y2) > 1 -Y, ( X + & p )  > 1 I ’  

(4.21) 

satisfies (4.11) exactly, indicating that the expansion near the main front is 
valid into the inner region. Equations (4.11) are hyperbolic with respect to the 
solutions 5 = f 1 , ~  = f y for 2 < T 1, and elliptic below this line, which is itself 
a characteristic of (4.11). It is clear that the solution 5 = 5 1, y = 5 y cannot 
extend into x > T 1, since an examination of the ME and In expansions shows 
that, for wo(ro) > 0, x = - 1 is the inner limit of the characteristic of discon- 
tinuity, while for wo(ro) < 0,  a shock stands ahead of x = + 1. 

To obtain a solution representing the remainder of the field, we use the hodo- 
graph equations (4.13). The form of the matching conditions (4.20) suggests 
that we seek a solution in the form of a polynomial: 

x = r2Y,*(fl) + r W 5 )  +%(5), Y = r’rP1(S) +‘PO(5). (4.22) 

The second equation of (4.13) is satisfied if 

Y t  =+Y; and Y: =Yh. 
Substituting into the first equation of (4.13), and ordering by powers of 7, we 
obtain 

~ 2 { ( 1 -  51rl) Y; + 2 ( ~ ,  + 6 ~ ; )  ui.;) + ~ { ( i  - EY,) y; + 2 ( y 1  + m;) y;} 
+ f ( l  -gYl)Y,h’+2Y1Y;+$(2Y1+Y;2)} = 0. (4.23) 

The quantities in each of the three brackets are set equal to zero, which yields 
three ordinary differential equations for the three functions Yl, Yo and Yt. The 
first equation is nonlinear, but may be integrated in closed form. However, if 
the matching condition (4.20) is to be satisfied, we must have ‘I”,(.$) = #([). 
Therefore, we only need to verify that #(c)  is a particular solution of the first 
differential equation, which can be done easily. The second and third equations 
are linear in the unknown functions, and have the general solution 

Yo($) = kl# (O + k2, %(5) = i&;$’(e) - g ( 6 ;  k3), 

1 
277 

where g ( [ ; k , )  = E+- sin(2nLJ+k3sin2(nEJ, (4.24) 
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and k,, k2 and k, are arbitrary constants. The solution (4.24) is now completely 
determined, and can be written in the more compact form 

= ~ ( r - r 0 ) 2 ~ ' ( 5 ) - g ( 5 ; ~ 3 ) ,  Y-YO = ( 7 - 7 0 ) # ( 8 ,  (4.25) 

where yo and yo are arbitrary constants. Equation (4.25) can also be written in the 
form 

6 =  kJYaL (7-70) = k ( Y - Y o ) ( G + w ] 7  (4.26) 
1 

where a(x, y) is defined implicitly by 

and g*(a) = g[ * F(a)]  = * F(a)  T - a + - k3 
7r(l+a2) l+a2' 

(4.27) 

(4.28) 

Equation (4.27) shows that the curves of constant a, and therefore the curves of 
constant 5 are parabolas whose axis of symmetry is y = yo. Such curves are 
shown, for yo = vo = k, = 0, vo(y0) > 0, in figure 5. The solution is a many-valued 
function of the variables x, y in a region bounded by the envelope of the curves 
a = constant and x = 4 T Q. There is a branch point at  x = T Q - k,, y = yo. a 
takes on all reaI values, and a = - co corresponds to x = 0, y < yo, while a = + co 
corresponds to x = T 1, y > yo. The equation of the envelope may be written as 

4.3. Matching 
We k s t  compute (1 - .lJ( 1 - I )  : 

u = eV1)(X, Y ) +  ... = eU(l) €2, - + ... with P < 0. ( 3  
We require the limit of U(') as E --f 0 with 2 and f fixed, which is the same as the 
limit of U(l)(x,  y )  as x --f 0, y -+ - 00 with (xy2) fixed. From (4.27) it is clear that 
a +- co in this limit. As a -+-a, 

(Y-Yo)2+ ( T -  na+...) 2 = o. X-- 
2012 

Retaining only the leading term in the parentheses, and solving the resulting 
quadratic equation on a-l: 

- 2 

= Y  
= + T2 (1 k El + &72y2x]i} + . . . . 

Expanding, 

I U - = eg+ ... = sF(a)+ ... = + €  
BlCOl 

2 

n Y  
= s ~ { l * [ l + ~ ~ 2 y 2 X ] ~ } + . . . ,  

(4.29) 

(4.30) 
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These solutions are valid for x > 0 if wo(ro) -= 0, and for x > x, if wo(ro) > 0. As 
a-t-co) 

5, = (na)-l+ . .., yt: = - ( -  2a/rp + . ..) (4.32) 

and therefore x, = - 2/(n2y2) < - 3/(2r2y2). As expected, the envelope extends 
into the undisturbed region beyond the shock. Comparing (4.30) and (4.31) with 
(4.14)) we see that the matching condition ( 1  -I)/( 1 - IL)  = ( 1  - IL) / (  1 - I )  
requires that yo = 0. 

Proceeding as in the above paragraph, it can be shown that (4.25) with T,, = 0 
satisfies first-order matching conditions with all the contiguous expansions of 
$$2 and 3; the remaining constants in the inner solution are not determined by 
formal matching. The applicability of the matching principle can be shown by 
simple examples to depend upon an appropriate choice of outer and inner 
variables. As noted at the beginning of $4.2, the first-order inner solution ahead 
of the shock or characteristic is precisely the ( 1  - I ) / (  1 - I,I) expansion. However, 
if it is desired to carry out formal first-order matching between the inner and 
main front expansions, it is found necessary to introduce new inner variables, 
e.g. X ,  = [l -rcos(8,-8)]/s and Yl = (8,-8)/d to replace X and Y .  Then the 
inner expansion in the variables X, and Y ,  matches formally to first order 
with the I,, expansion. 

Thus, (4.25) becomes a two-parameter family of exact solutions to the field 
equations (4.13) appropriate to the inner region for both cases wo(r,) 0, which 
satisfies all matching conditions that can be imposed a t  this stage of the expansion 
process. It remains to satisfy the two shock conditions (4.12), but with only 
the two arbitrary constants k,  and yo in the solution, it is to be expected that the 
two conditions cannot be satisfied simultaneously. For the case vo(ro) < 0, it 
does not appear possible t o  construct shocks satisfying (4.12) in the region near 
y = 0. On the other hand, for vo(r,) > 0, k, and yo can be chosen so that both shock 
conditions are approximately satisfied. The construction of the shock and the 
corresponding field behind the shock for wo(ro) > 0 represents the major result 
of this analysis, and this case is considered in detail in $5. 

5. Approximate construction of the shock when wo(ro) > 0 

I n  the case of compressive flow behind the main front, there is a shock near 
that front, as well as a shock near the diffracted front to the left of the singular 
point. We assume that these are segments of a single shock wave which continues 
through the inner region and separates undisturbed flow ahead of the shock from 
disturbed flow behind it. Under this assumption, the two shock conditions (4.12) 
become 

(5.1 a, b )  

where ( and 7 are evaluated directly behind the shock. 

dx /dy  = - T/ (  and dx/dy = - { - (2% + ()}&, 
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Further, in this case there is a characteristic of discontinuity near the diffracted 
front to the right of the singular point, whose equation is given by 

(1 - r )  = EE(8) + O ( E )  

(see (3.11)). Forming the one-term inner expansion of the above equations, we 
obtain X = E(B,), or x = - 1 as the leading term of the inner representation of 
this characteristic. The solution (4.26) is defined for x > - 1, y > yo. However, 
if x = - 1 is t o  represent a characteristic of discontinuity, the inner solution con- 
sisting of (4.26) and (4.21) in their respective regions of definition must be con- 
tinuous across this characteristic. To satisfy this condition for 7 as well as for 
5, yo must be set equal to zero. 

We consider the conditions (5.1) from the following point of view: if a field 
(& 7) satisfying (4.13) and appropriate matching conditions is assumed to exist 
behind the shock, then each of conditions (5.1) together with an appropriate 
initial condition furnishes an equation for determination of the shock. If the 
assumed field is the correct solution to the first-order inner problem, then the 
two curves computed from (5.1 a,  b)  must coincide, and this coincidence can, in 
effect, be taken as a criterion for the correctness of the field and corresponding 
shock wave as a solution to the first-order inner problem. 

Applying this criterion of coincidence in the region ahead of the characteristic 
of discontinuity for large positive y, where the only available candidate for the 
field behind the shock is E = 1 , ~  = y, we immediately determine the shock as 

x + i y a  = -1 (5.2) 2 '  

(This is exactly the leading term of the inner expansion of the shock associated 
with the IM expansion.) With both shock conditions satisfied on the shock (5.2), 
we are led to accept this shock and the field 5 = 1 , ~  = y as the leading term of the 
inner expansion of the exact solution in this region. 

The shock (5.2) intersects the characteristic of discontinuity x = - 1, when 
y = 1. For y < 1, the available candidates for the field are the family of particular 
solutions of the inner equations (4.25) with yo = 0, 

27 $ ' (6) -g(& fu Y = r$(E), (5-3) 

all of which satisfy matching conditions with the contiguous expansions of 
§ 3 and with the outer expansion. An initial condition for the integration of (5.1) 
is provided by the fact that x = - 1, y = 1 is a point on the shock. Since (5.3) 
gives x and y explicitly in terms of and q, while 5 and 7 can only be represented 
implicitly in terms of x and y, it  is convenient to study the image of the shock in 
the hodograph plane. From (5.1), the following conditions must be satisfied 
on the hodograph image of the shock: 

d 7 p t  = - (,%g + 7Y5) (tx, + rY,)-l7 ( 5 . 4 4  

d7/d5 = - {xg + Y& - ( 22 + .g))*){X, + y,( - (22 + t))+)-l. (5.4b) 

The initial condition in the hodograph plane follows from the fact that the field 
immediately behind the shock at the point x = - 1, y = 1 is t = 1 , ~  = 1. 
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tion whose general solution may immediately be written in the form 
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For any solution of (4.13) xT = yr, which implies that ( 5 . 4 ~ )  is an exact equa- 

Inserting (5.3), carrying out the integrations, and imposing the initial condition 
~ ( 1 )  = 1, we obtain 

&q2{[+([)}’ - (2n2)-l(n2f;2+nEsin (2n5) + ~ ( C O S  (2n5) - 1) 

+ (E3/4n) (2n(5cos (2nE) - 1)  -sin (27rE)) = 0. (5.6) 

As < + 0 on the curves (5.6), we have 

q2 = Qk37r253+ ... if E ,  $: 0, and 92 = & ~ 2 [ 5 +  ... if k3 = 0. 

Therefore, since x = (9r2)/(2n2E4) - 2[+ . , , and y = - (37)/(n213 + . . . as 6 -+ 0, 
on the curves (5.6) 

x = 43k,<-l + . . ., y = - (3ki7r-36-*) c-* + . .. if k, $: 0, 
x = -z< + ..., y = -(34n-l) ,  c-*+ ... if k3 = 0. 

From (4.14) we see that the shock should have the asymptotic behaviour 
x = - 3/(2n2y2) as y + - 00. Therefore, (5.6) can represent the shock in the inner 
region only if E3 = 0, so that (5.6) has the correct asymptotic behaviour to match 
the shock associated with the IL expansion. With k ,  set equal to zero, we find for 
the field 

and, for the shock satisfying (5.4u), 

x = 4T2+’(E) - dE; 01, Y = T+(E), (5.7) 

iq2{&(E))’ - (2n7-l {n2E2 + nE sin ( 2 7 4  + ~ ( C O S  (2nf) - 1)) = 0. (5 .8 )  

It remains to consider shock condition (5.4b) subject to the initial condition 
~ ( 1 )  = 1.  We note that, from (5 .8 ) ,  d2yld[2 = - 2-n2 at  the point E = 1, 7 = 1, 
while (5.4b) and (5.7) imply that the shock computed using (5.7) and the second 
shock condition will have d2q/d[2 = - 3 - 712 at 5 = 1, q = 1 .  Therefore, the shock 
computed using (5.4b) and the field (5.7) will not coincide exactly with the shock 
(5 .8) .  This discrepancy in the solution is attributable to the fact that a general 
solution to the system of inner equations (4.11) is not available, and the family 
of particular solutions (5 .3 )  is too restricted to yield an exact solution to the first- 
order inner problem. 

However, the following considerations show that the result (5.7) and (5.8) is a 
remarkably good approximation to the first-order inner solution. Equation 
(5.4b) with the field (5.7) may be integrated numerically to any desired degree 
of accuracy and the results of such a numerical integration are shown in figure 4, 
together with a graph of (5.8).? Although the two curves do not coincide every- 

t Here w0 point out that, if the field (5.3) is used in conjunction with the shock condition 
( 5 . 4 b ) ,  both numerical computations and an examination of the direction field associated 
with this differential equation near the origin indicate that as 5 --f 0 7 = na-g 68 f ... for 
all values of k ,  in some neighbourhood of k, = 0. This is the correct behaviour to match 
the shock associated with the IL  expansion, since this ~ ( 5 )  is precisely the hodograph image 
of the shock obtained from the (1 - I ) / (  1 - 1,) expansion. 
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FIGURE 4. Hodograph image of shock associated with the field: 
= 9r2#’(5)-s(5; 01, Y = M E ) .  

where, they are asymptotic to each other and to the correct shock wave near the 
points (0 ,O) and ( 1 , l )  in the hodograph plane. Further, they differ from one 
another by less than about 6 % over 0 < < < 1, with the maximum difference 
occurring at two points near 5 = 0-4 and 5 = 0.7. To estimate the error in this 
approximation, a more accurate analytical or numerical solution to the inner 
problem is required. It appears that such an improvement would require con- 
siderable effort to obtain a correction which is expected to be uniformly small. 

6. Results and discussion 
The results of our analysis for the case vo(ro) > 0 (compression behind the 

main front) are summarized in figure 5 ,  where the perturbation pressure field 
according to our approximate first-order inner solution is shown superimposed 
on the first-order outer (linearized theory) perturbation pressure field. The shock 
resulting from each of the conditions (5.1 a, b )  is also shown. The results exhibited 
in this figure are quite general, and apply to conical bodies of arbitrary shape and 
orientation, within the restrictions imposed in (2.6), (2.7). These results have 
been specialized for a specific physical example of a flat plate a t  incidence, and 
are presented infigure 6. For this case, G(2) = p, rl = 0, r,, = +OO; the Mach 
number is chosen to be M = 2 and tan-1 E ,  the angle of incidence, is taken as 2”. 
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FIGURE 6. Perturbation pressure field and shock when wo(ro) > 0. ---, p/ (eC0M2)  = con- 
stant (first-order inner) ; - -, p/(eCOM2) = constant (first-order outer linemiiied theory) ; 
-, shock (5.la); --, shook ( 5 . l b ) .  

1 - r  eo-e B-PO z=- y = -  p = -. 
epC0 K ’ (e/3COK)*’ 4 PO 

The inner solution provides a smooth transition between the flow near the main 
front, where the perturbation qua,ntities and shock strength are O(B),  and the 
flow near the diffracted front, where these quantities are O(e2) .  The shocks com- 
puted from both shock conditions are shown in figure 6, and these curves are seen 
to be almost coincident everywhere, a noticeable departure occurring only for a 
small range of negative y. The differences are insignificant in the physical vari- 
ables on the scale of figure 6. Lines of constant perturbation pressure according to 
linearized theory are shown in both figures. The directional singularity of the 
linearized solution reflects the behaviour of the inner solution as one moves away 
from the singular point, but sufficiently close to that point the linearized 
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.- 

FIGURE 6. Pressure field and shock below a flat, rectangular plate at incidence. y = 1.4, 
M = 2. -, shock; - - -, characteristic of discontinuity; - - , ( p  -pu)/pu = constant; 
- , _ _  , linear theory. 

theory is completely inaccurate. Although the range of perturbation pressures 
predicted by the inner solution is the same as that of the linearized solution 
(0 < p/sC,M2 < l ) ,  the distribution of pressure differs radically in the two 
solutions. Figure 6 shows that, while the directional singularity of the linear- 
ized solution predicts an instantaneous decay in the perturbation pressure 
behind the wave front from p/sC,, M 2  = 1 to &C, M 2  = 0 as one crosses 8 = 8,, 
in the inner solution this decay occurs much more gradually, requiring an 
angular span of about 40" in this case. Finally, the inner solution has shock dis- 
continuities for 8 > 8, whereas the linearized solution predicts a continuous 
field across the wave front, and the inner solution predicts an expansion at  a 
finite rate behind the characteristic of discontinuity, whereas the linearized 
solution shows an expansion at  an infinite rate. The characteristic of discontinuity 
has been moved outward from its linearized position, in accordance with the fact 
that the sound speed is increased over its free-stream value in the compressed 
region behind the main front. 

As was mentioned in $1,  the nature of the flow in the vicinity of the singular 
point was the subject of a number of previous investigations. Legras (1953) tried 
to  generalize the method of Lighthill (19493), to determine the flow near the 
singular points associated with a rectangular plate at incidence, such as that 
shown in figure 6. However, his analysis seems incorrect: he found a plane shock 
above the plate, where in fact a continuous Prandtl-Meyer expansion fan must 
exist. Further, he found a discontinuity in the perturbation pressure im- 
mediately behind the shock at  the point where the plane shock below the plate 
intersects the characteristic of discontinuity. Such a discontinuity implies the 
existence of another shock branching out from this point. Our solution shows 
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that it is not necessary to assume such a shock configuration: there exists only 
a single, smooth shock, and the pressure varies continuously behind it. 

Davis (1969) attempted to extend the methods introduced by Whitham (1952, 
1956), to include the behaviour of the flow near the singular points. While the 
general problem treated in Davis (1969) involves a body of finite dimensions, 
there exist regions where the flow is conical (near the wing-tips), and Davis 
(1969) provides formulae for the axial perturbation velocity field w and for the 
shock in these regions. However, this approximation for w is not the first term 
of a uniformly valid (composite, generalized) asymptotic expansion in the sense 
of Van Dyke (I964), because it can be shown that the one-term inner expansion 
of the approximation yields a W(l)(X,  Y )  which is incompatible with the inner 
equations. On the other hand, a comparison of the one-term inner expansion 
of the approximation for w given in Davis (1969) with our approximate solution 
for the same body shape (a wedge of rectangular plane form with the plane B = 0 
bisecting the wedge) shows that these two functions do not differ greatly. This 
would partially explain why there is good agreement between the analytical re- 
sults of Davis (1969) and the experimental results of Davis (1971). 

When the work presented here was substantially complete, the book by Bag- 
doyev (1969) appeared, which dealt primarily with unsteady shock wave propa- 
gation in compressible liquids. Bagdoyev found solutions essentially equivalent 
to (5.3) for the unsteady diffract,ion problem analogous to the problem treated 
here. However, he applied only the second of the shock conditions (5.1)) ap- 
parently ignoring the first. But, as noted in $5, this makes the solution to the inner 
problem indeterminate: a shock can be constructed using (5.16) satisfying the 
initial condition x(1) = - 1, and having the correct asymptotic behaviour as 
y -+ - 00 for a range of values of k, around k, = 0. The author does not mention 
this difficulty and appears to make the arbitrary choice k, = Q, but, as shown 
in Q 5, this field would produce an unacceptable shock when used in conjunction 
with (5.1 a).  In  fact, as Hayes (1971) remarked, there are two independent, equally 
important, shock conditions which the correct inner solution ( E ,  7) must satisfy. 

Seebass ( 197 1)  discussed a related problem involving nonlinear propagation 
in the vicinity of a caustic of linearized theory. By means of a hodograph-related 
transformation, he succeeded in linearizing the inner equations of motion and 
obtaining their solution subject to appropriate asymptotic boundary conditions. 
As in the problem considered here, Seebass’ solution allows exact satisfac- 
tion of only one of the shock conditions. However, in contrast to the results 
given here, the second independent shock relation can be approximately satisfied 
by Seebass’ solution to the caustic problem only when the shock strengt,h is 
infinitesimal. 
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